

PLOT 5C, 2ND FLOOR, GANAPATI COMPLEX, SEC-13, OPP. JAIPURIA SCHOOL, VASUNDHARA, GHAZIABAD (U.P) **CHEMICAL KINETICS -4**

- 1. For the reaction $Cl_2(g) + 2NO(g) \rightarrow 2NOCl(g)$ the rate law is expressed as rate = $k[Cl_2][NO]^2$. What is the overall order of this reaction?
- 2. Express the rate of the following reaction in terms of disappearance of hydrogen in the reaction: $3 H_2(g) + N_2(g) \rightarrow 2NH_3(g).$
- 3. For the reaction A \rightarrow B, the rate of reaction becomes twenty seven times when the concentration of A is increased three times. What is the order of the reaction?
- 4. A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is the order of the reaction?
- 5. The rate of reaction $X \rightarrow Y$ becomes 8 times when the concentration of the reactant X is doubled. Write the law of the reaction.
- 6. What is meant by elementary step in a reaction?
- 7. Define activation energy of a reaction?
- If-life period of a reactant and its initial concentration if the 8. Express the relation between t reaction involved is of secon order
- -life period of a reactant and its initial concentration for a 9. Express the relation by on the hal W reaction of nth orde
- 10. How does the value of the rate constant vary with reactant concentration
- 11. A substance with indial concentration 'a' follows zero order kinetics with the rate constant 'k' mol $L^{-1}s^{-1}$ In how much time will the reaction go to completion? When is the rate of reaction equal to specific reaction rate?
- 12. When is the rate of rea
- 13. The reaction $A+B \rightarrow C$ has zero What is the rate equation?
- 14. In some cases, it is found that a e number of colliding molecules have energy more than 11 threshold value, yet the reaction w. Why?
- 15. Give an example of pseudo first r reaction.
- 16. The rate law for the decomposition of N_2O_5 is: rate =k[N_2O_5]. What is the significance of 'k' in this equation?
- 17. The reaction of $2H_2(g) + O_2(g) \rightarrow 2NH_3(g)$, is thermodynamically feasible. How is it that a mixture of hydrogen and oxygen kept at room temperature shows no tendency to form water?
- 18. For the reaction $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$, how is the rate of reaction expressions $-\frac{d(H_2)}{dt}$ and $\frac{d(NH_3)}{dt}$ interrelated?
- 19. Why is it that instantaneous rate of reaction does not change when a part of the reacting solution is taken out?
- 20. For a reaction $A + H_2O \rightarrow B$. rate \propto [A]

What is its (i) molecularity (ii) order of reaction?

- 21. The rate constant of a reaction is $1.5 \times 10^7 s^{-1}$ at 50°C and 4.5 x $10^7 s^{-1}$ at 100°C. Calculate the value of activation energy, E_a for the reaction. [R = 8.314 JK⁻¹mol⁻¹].
- 22. What are photochemical reactions? Explain the mechanism of the photochemical reaction occurring between hydrogen and chlorine gas?
- 23. What is known as 'activation energy'? How is the activation energy affected by
 - a. The use of a catalyst
 - b. A rise in temperature?
- 24. The reaction $SO_2Cl_2 \rightarrow SO_2 + Cl_2$ is a first order reaction with half- life 3.15 x 10⁴s at 320°C. What percentage of SO₂Cl₂ would be decomposed on heating at 320°C for 90 minutes?

- 25. What will be the initial rate of reaction if its rate constant is 10⁻³s⁻¹ and the concentration of the reactant is 0.2mol L⁻¹? What fraction of the reactant will be converted into the products in 200 seconds?
- 26. The rate constant for a first order reaction becomes six times when the temperature is raised from 350K to 400K. calculate the activation energy for the reaction. $[R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}]$.
- 27. Why is it that rate of most of the reactions increase, when the temperature is increased? In what unit is the rate of reaction expressed?
- 28. A first order reaction is 20% complete in 20 minutes. Calculate the time it will take the reaction to complete 80%.
- 29. a. Draw a schematic graph showing how the rate of reaction changes with change in concentration of reactant.

b. Rate of reaction is given by the equation :

Rate = $k [A]^{2} [B]^{1}$.

What are the units of rate and the rate constant for the reaction?

30. Rate constant k of a reaction varies with temperature according to the equation:

Log k =constant $-\frac{E_a}{2.303RT}$, where E_a is the energy of activation for the reaction. When a graph is plotted for log k versus 1/T, a straight line with a slope -6670K is obtained. Calculate energy of activation for this reaction. State the units, (R = 8.314 JK⁻¹mol⁻¹).

- 31. State the role of activated complex in the reaction and state its relation with activation energy.
- 32. The following experimental data were collected for the reaction:

$Cl_2(g)$	$+ 2NO(g) \rightarrow 2NO(1/g)$					
TRIAL	Initial conc, $Cl \mod L^{-1}$	Initial conc. $[NO_2]$ mol L ⁻¹ Initial and mol L	1			
1	0.010	0.010 1.20x 10 ⁴				
2	0.010	0.030 10.8×10^{-4}				
3	0.020	0.030 21.6×10^{-4}				

Construct the rate equation for the reaction.

- 33. What aspect of a reaction is influenced by presence of catalyst which increases the rate or possibility of the reaction?
- 34. The rate of reaction $2NO + Cl_2 NOCl is double when concentration of Cl_2 is doubled and it becomes eight times when concentration of both NO and Cl_2 are doubled. Deduce the order of this reaction.$

35. For the decomposition of N₂O₅ at 298 K, the rate law is $\frac{d[N_2 o_5]}{dt} = kN_2O_5$. Starting with moles 2.5 moles of N₂O₅(g) in a five litre container, how many moles per litre of N₂O₅ would remain after 75 seconds if rate constant for the reaction is 16.8x 10⁻³s⁻¹?

36. For the reaction at 500 K

 $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g),$

- The proposed mechanism is as follows:
 - i. $NO_2 + NO_2 \rightarrow NO + NO_3(slow)$
 - ii. $NO_3 + CO \rightarrow CO_2 + NO_2$ (fast)
 - What is the rate law for the reaction?
- 37. Nitric oxide reacts with H₂ to give N₂ and water $2NO + 2H_2 \rightarrow N_2 + 2H_2O$

The rate law for the above reaction is $\frac{-d[NO]}{dt} = k[NO]^2[H_2]$, explain the mechanism of the reaction.

- 38. The rate constant for the first order decomposition of N_2O_5 at $45^{\circ}C$ is $3.00 \times 10^{-2} \text{ min}^{-1}$. If the initial concentration of N_2O_5 is $2.00 \times 10^{-2} \text{min}^{-1}$. If the initial concentration of N_2O_5 is $2.00 \times 10^{-3} \text{mol} \text{L}^{-1}$, how long will it take for the concentration to drop to $5.00 \times 10^{-4} \text{ mol} \text{ L}^{-1}$?
- 39. The catalytic decomposition of H_2O_2 was studied by titrating it at different intervals with KMnO₄ solution. Calculate the rate constant from the following data assuming the reaction to be of first order.

t(seconds)	0	600	1200
$KMnO_4(ml)$	22.8	13.8	8.2

40. The decomposition of phosphine

 $4PH_3(g) \rightarrow P_4 + 6H_2O(g)$ has rate law, rate =k[PH_3]. The rate constant is 6.0 x 10⁻⁴ s⁻¹ at 300 K and E_a is 3.05 x 10⁵ Jmol⁻¹. What is the value of rate constant at 310 K? [R = 8.314 JK⁻¹mol⁻¹]. 41. The rate constant for the reaction

 $CH_3I + C_2H_5ONa \rightarrow CH_3OC_2H_5 + NaI at 273 K is 5.60 x 10^{-5} and at 300 K is$ 100×10^{-5} Lmol⁻¹s⁻¹ respectively. Calculate the value of activation energy of the reaction.

- 42. Calculate the activation energy of a reaction whose reaction rate at 310 K gets doubled for 10K rise in temperature.
- 43. The decomposition of N_2O_5 in CCl₄ solution follows the first order rate law. The concentrations of N₂O₅ measured at different time intervals are given below:

<u> </u>			U				
Time in	0	80	160	410	600	1130	1740
seconds (t)							
$[N_2O_5]$ mol	5.5	5.0	4.8	4.0	3.4	2.4	1.6
L^{-1}							

Calculate its rate constant at t = 410s and t = 1130 s, what do these results show?

- 44. For a reaction the energy of activation is zero. What is the value of rate constant at 300 K, if k = $1.6 \times 10^{6} \text{ s}^{-1}$ at 280 K? [R = 8.314 JK⁻¹mol⁻¹].
- 45. For a reaction: $2A + B + C \rightarrow A_2 + B + C$, the rate law has been determined to be: rate = k[A][B]² if the value of k is 2.0 x 10^{-6} mol⁻²L²s⁻¹ for the reaction, determine the initial rate of the reaction with $[A] = 0.2 \text{ mol} L^{-1}$, $[B] = 0.1 \text{ mol} L^{-1}$, $[C] = 0.5 \text{ mol} L^{-1}$. 46. What are pseudo unimolecular eactions? Give two examples.
- 47. Show graphically, how the rate of heaction depends on the concentration of reactant when there is only reactant and the least on is of first order?
- 48. What is meant by relative rates of reaction? Write the relative rate expressions following chemical reaction

 $Q(g) + 6H_2O(g)$ $4NH_3(g) + 5O_2$

- 49. The rate constant of a reaction is 0.01439 min⁻¹ at 25°C and its activation energy is 70,000Jmol⁻¹ ¹. What constant at 40° C? [R = 8.314 JK⁻¹mol⁻¹
- the reaction is 60s⁻¹. How much time will it take to reduce the 50. The rate constant for a first concent ation of the reactant to 1 of its initial value?
- The true of a particular requires the temperature changes from 50°C to 100°C. Calculate the activation energy of the reaction. $[\log 3 = 0.4771; R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}].$ 51. The
- 52. A first order reaction takes 69.3 minutes for 50% completion. Set up an equation determining the time needed for 80% completion of this reaction. (Calculation of result is not required).
- 53. The activation energy of a reaction is 75.2 kJmol⁻¹ with a catalyst. How many times will the rate of reaction grow in the presence of the catalyst if the reaction proceeds at 25°C? [R =8.314 JK⁻¹mol⁻¹].
- 54. During nuclear explosion, one of the products is 90 Sr with half=life of 28.1 years. If 1 µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically?
- 55. The rate of a particular reaction doubles when temperature changes from 27°C to 37°C. Calculate the activation energy of such reaction.
- 56. A reaction is first order in A and second order in B.
 - a. Write differential rate equation.
 - b. How is the rate affected if the concentration of B is tripled?
 - c. How is the rate affected when the concentrations of both A and B are doubled? What is the significance of rate constant in the rate expression?
- 57. In general it is observed that the rate of a chemical reaction doubles with every 10° rise in temperature. If this generalization holds for a reaction in the temperature range 295 K to 305 K, what would be the value of activation energy for this reaction?