<u>IIT/EKLAVYA BATCH</u> **THE GURUKUL INSTITUTE**

PLOT 5C, 2ND FLOOR, GANAPATI COMPLEX, SEC-13, OPP. JAIPURIA SCHOOL, VASUNDHARA, GHAZIABAD (U.P)PH. NO.9810780903

TIME: 3 HR

GURUKUL MATHS QUIZ -2

MM: 134

M.C.Q's(More than one may be correct option)

1.	$5^{x} + (2\sqrt{3})^{2x} - 169 \le 0$ is true in the inter	val		
	a) $(-\infty, 2)$ b) $(0, 2)$	c) (2, ∞)	d) (0, 4)	
1.	The set of all 'm' for which $mx^2 - 4x + m < 0$ for all real x is given by			
	a) m > 2 b) m > - 2	c) – 2 < m < 2	d) None	
2.	If for the quadratic equation $ax^2 + bx$	+ c = 0 the product of the root	ne product of the roots is equal to the sum of the	
	reciprocals of the roots then	cals of the roots then		
	 a) a and b are of opposite sign 	b) a and c are of op	posite sign	
	c) both roots cannot be negative	d) – a, c , b are in G	P	
3.	If the quadratic equation $ax^2 - 2bcx + c = 0$ has both roots positive then			
	a) a and b must have same sign	b) a and c must hav	b) a and c must have sign	
	c) b and c must have same sign	c must have same sign d) a and D must have sign		
4.	If the equation $ax^2 - 2bx + c = 0$ has rea	$n ax^2 - 2bx + c = 0$ has real roots which are reciprocal of each other then one has		
	a) b \leq a b) $ b \geq a $	$ c) b \ge c $	i) a = c	
5.	The equation $\sqrt{2} \sin^2 x \pm (2\sqrt{2} - 1) \sin x - 2 = 0$ has two roots in the interval			
	a) (0 , π) b) (π, 2π)	c) $\left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$	d) $\left(\frac{-\pi}{2}, \frac{3\pi}{4}\right)$	
6.	$2x^2 - \cos \theta(3 + 4x) + 2 > 0$ for all real x provided θ lies in the interval			
2.	a) $(0, \frac{\pi}{3})$ b) $(\frac{\pi}{3}, \frac{2\pi}{3})$	C) $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$ d) $\left(\frac{4\pi}{3}\right)$	$(\frac{4\pi}{3}, 2\pi)$	

SUBJECTIVE PROBLEMS

- 1. If sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, show that bc^2 , ca^2 , ab^2 are in AP.
- 2. If one root of a quadratic equation $ax^2 + bx + c = 0$ is equal to nth power of the other, show that $(ac^n)^{1/n+1} + (a^n c)^{1/n+1} + b = 0$
- 3. If r be the ratio of the roots of the equation $ax^2 + bx + c = 0$, show that $(r+1)^2/r = b^2/ac$.
- 4. Solve for x: $(5 + 2\sqrt{6})^{x^2 3} + (5 2\sqrt{6})^{x^2 3} = 10$
- 5. The coefficient of x in the equation $x^2 + px + q = 0$ was wrongly written as 17 in place of 13 and the roots thus found were -2 and -15. Find the roots of the correct equation.
- 6. If c,d are the roots of the equation(x- a)(x-b) -k =0, show that a, b are the roots of the equation (x-c)(x-d) + k = 0.
- 7. Show that if p, q,r,s are real numbers and pr=2(q+s) then at least one of the equations $x^2 + px + q = 0$ and $x^2 + rx + s = 0$ has real roots.
- 8. Show that the equation $e^{\sin x} e^{-\sin x} 4 = 0$ has no real solution.
- 9.